

View

Online


Export
Citation

RESEARCH ARTICLE |  SEPTEMBER 17 2025

Fluid–structure interaction simulations to investigate the
asymmetrical pattern and energy transfer during vocal fold
vibrations 
Guofeng He  ; Qilin Liu   ; Weibing Cai  ; Azure Wilson  ; Mohammad Hossein Doranehgard;
Lea Sayce  ; Haoxiang Luo  ; Zheng Li  

Physics of Fluids 37, 091921 (2025)
https://doi.org/10.1063/5.0282547

Articles You May Be Interested In

Two-scale structure of the current layer controlled by meandering motion during steady-state collisionless
driven reconnection

Phys. Plasmas (July 2004)

 17 Septem
ber 2025 16:03:22

https://pubs.aip.org/aip/pof/article/37/9/091921/3363833/Fluid-structure-interaction-simulations-to
https://pubs.aip.org/aip/pof/article/37/9/091921/3363833/Fluid-structure-interaction-simulations-to?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0009-0000-5533-0275
javascript:;
https://orcid.org/0000-0001-6103-4720
javascript:;
https://orcid.org/0009-0004-9830-4033
javascript:;
https://orcid.org/0000-0002-7876-6255
javascript:;
javascript:;
https://orcid.org/0000-0002-0869-4583
javascript:;
https://orcid.org/0000-0002-1984-1040
javascript:;
https://orcid.org/0000-0002-0132-8812
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0282547&domain=pdf&date_stamp=2025-09-17
https://doi.org/10.1063/5.0282547
https://pubs.aip.org/aip/pop/article/11/7/3579/260951/Two-scale-structure-of-the-current-layer
https://e-11492.adzerk.net/r?e=&s=cA3kYHI7Fv4Nwg4W0HVfG8WW2sA


Fluid–structure interaction simulations
to investigate the asymmetrical pattern
and energy transfer during vocal fold vibrations

Cite as: Phys. Fluids 37, 091921 (2025); doi: 10.1063/5.0282547
Submitted: 27 May 2025 . Accepted: 28 August 2025 .
Published Online: 17 September 2025

Guofeng He,1 Qilin Liu,1,a) Weibing Cai,1 Azure Wilson,1 Mohammad Hossein Doranehgard,1,2

Lea Sayce,3 Haoxiang Luo,4 and Zheng Li1,a)

AFFILIATIONS
1Department of Mechatronics Engineering, Morgan State University, Baltimore, Maryland 21251, USA
2Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
3Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences,
University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

4Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, USA

Note: This paper is part of the Special Topic, Flow and Phonation.
a)Authors to whom correspondence should be addressed: qilin.liu@morgan.edu and zheng.li@morgan.edu

ABSTRACT

Asymmetrical vocal fold vibration is the cause of many voice problems. In this study, a two-dimensional fluid–structure interaction model is
developed with the finite element method in COMSOL Multiphysics. The vocal folds with asymmetric stiffness are simulated and compared
with the symmetric vocal folds as well as unilateral immobile vocal folds. The vocal fold vibration pattern and energy exchange between the
fluid and vocal fold structure are analyzed. The results show that the unilateral vocal fold paralysis (UVFP) and the stiffness difference
between the two vocal folds would lead to a decrease in the vibration amplitude compared with symmetrical conditions. The asymmetrical
vocal fold vibration allows a frequency lock-in between two sides of the vocal fold, and the lock-in frequency is sensitive to the vocal fold stiff-
ness. The vocal fold vibration can maintain a quasi-periodic pattern when the stiffness difference is less than 5MPa. 10MPa stiffness differ-
ence can trigger a transition from the quasi-periodic state to the chaotic state. The energy conversion efficiency between fluid and structure is
reduced in the presence of a stiffness difference and under UVFP conditions. This efficiency is further decreased when chaotic vibration hap-
pens, indicating the importance of vibration regularity in maintaining effective fluid-to-structure energy transfer.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0282547

I. INTRODUCTION

Phonation is a biomechanically intricate process that plays a
fundamental role in human vocal communication. Voice production
primarily occurs in the larynx, where the vibration of the vocal folds
constitutes the principal source of acoustic energy. Each year, approxi-
mately 7.6% of adults in the United States (nearly 17.9� 106 individu-
als) are reported to experience voice disorders (Bhattacharyya, 2014).
The majority of voice disorders are attributed to involuntary muscular
activity within the larynx (Van Houtte et al., 2010). A comprehensive
understanding of the mechanisms underlying voice production is
crucial for the effective prevention and clinical management of such
disorders.

The vibration of the vocal folds is induced by the pressurized
airflow from the lungs. The interaction between the airflow and the

vocal fold tissue, referred to as fluid–structure interaction (FSI), is
responsible for generating self-sustained, periodic oscillations that
produce the primary acoustic signal. The sound wave is subse-
quently modulated by the articulatory structures, including the oral
cavity, tongue, and lips, to form intelligible speech (Pramanik et al.,
2024). In this process, the vocal fold vibration directly influences
the pitch, loudness, and timbre of the produced voice. Unilateral
vocal fold paralysis (UVFP) is a common voice disorder character-
ized by the impaired vibratory function of one vocal fold, typically
resulting from neural or muscular damage. UVFP impairs the regu-
lation of pitch and loudness, leading to significant difficulties in ver-
bal communication and social interaction (Chhetri et al., 2013;
Ishizaka and Isshiki, 1976). By analyzing the frequency and wave-
form of vocal fold vibration, pathological features of UVFP can be
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identified, thereby providing a scientific basis for surgical interven-
tion (Alku et al., 2002).

Both in vivo and ex vivo experimental methodologies have been
employed to investigate the dynamics of vocal fold vibration. In vivo
experiments enable direct visualization of vocal fold vibration through
high-speed endoscopy. However, this technique is limited in its ability
to capture airflow characteristics and the underlying FSI dynamics
(Kniesburges et al., 2011). In contrast, ex vivo experiments facilitate
the visualization of the laryngeal airflow field, thereby providing critical
insights into FSI mechanisms. The ex vivo experiments commonly uti-
lize animal models with laryngeal anatomies comparable to that of
humans, such as rabbits (Li et al., 2021b) and non-human primates
(Nishimura et al., 2022). These studies have demonstrated the feasibil-
ity and efficacy of employing animal laryngeal models to investigate
human laryngeal function (Fernandes et al., 2025). Nonetheless, the
high cost and complexity associated with animal-based experiments
pose significant limitations. As a practical alternative, simplified laryn-
geal models offer a cost-effective and highly controllable platform for
investigating laryngeal biomechanics. Among these, as proposed by
Scherer et al. (2001a) and later extended and refined through their sub-
sequent studies (Scherer et al., 2001b; 2010), a mechanical model
termed M5 has been widely employed for modeling the larynx. The
M5 model has been improved to analyze the material properties of the
vocal fold, the effect of the false vocal fold (Becker et al., 2009), and the
multi-layer structure of the vocal fold (Mendelsohn and Zhang, 2011),
etc. In addition to structural investigations, the M5 model has also
been utilized to analyze aerodynamic phenomena such as glottal jet
flow (Audier et al., 2016) and airborne propagation of respiratory
droplets (Fritzsche et al., 2022). In the present study, the M5 model is
employed to analyze the FSI characteristics associated with asymmetric
vocal fold vibrations.

In addition to experimental approaches, numerical simulation is
another important method for investigating asymmetric vocal fold
motion. Li et al. (2021b) employed asymmetric Young’s modulus value
for the bilateral vocal folds to investigate the vocal fold vibration in
both healthy and simulated UVFP conditions. Their findings revealed
a 10%–11% difference in frequency between the two sides. Xue et al.
(2014) simulated tension imbalance by reducing the Young’s modulus
of one vocal fold by 20%, successfully reproducing phase-shifted and
amplitude-asymmetrical vibration patterns. Naseri and Razavi (2023)
modeled UVFP by assigning significantly higher stiffness to one side of
the vocal fold, effectively reproducing the asymmetrical vibratory
dynamics observed before and after medialization laryngoplasty (a
common surgical intervention). These studies demonstrate that the
vibration patterns characteristic of UVFP primarily arise from stiffness
asymmetry between the vocal folds. To model the vocal fold dynamics,
some studies have employed the mass-spring model, in which the
vocal folds are simplified using either two-mass or collective-mass rep-
resentations. Xue et al. (2010) developed a two-mass model and
reported a nonlinear vibration behavior under conditions of tension
imbalance. As the imbalance became severe, the glottal flow transi-
tioned from a periodic regime to quasi-periodic variations. They also
demonstrated that tension imbalance has a pronounced nonlinear
effect on the fundamental frequency of vocal fold vibration. However,
these mass-spring models typically assume the vocal fold only deforms
in the lateral direction. In contrast, continuum models are capable of
simulating hyperelasticity behavior and dynamic deformations that

more closely approximate physiological conditions (Chen et al., 2020;
Li et al., 2020; and McCollum et al., 2023). These models can be fur-
ther refined to incorporate anatomical features such as the vocal fold
cover and the false vocal folds (Xue et al., 2014; Zheng et al., 2009).
The fidelity of these models can be enhanced through the integration
of anatomical data obtained from advanced medical imaging techni-
ques, such as magnetic resonance imaging (MRI) and computed
tomography (CT) (Li et al., 2021b; McCollum et al., 2023; Mittal et al.,
2011; and Xue et al., 2010). Continuum models offer valuable insights
into the stress distribution and deformation patterns within the vocal
folds. Therefore, in the present study, a continuum model is employed
to investigate the effect of stiffness asymmetry on vocal fold vibration.

Phonation involves a continuous energy exchange between the
vocal folds and the glottal airflow, which drives and sustains vocal fold
oscillation. Titze (1980) reported that during the opening phase of
vocal fold vibration, the kinetic energy of airflow is transferred to the
vocal fold. In this process, the vocal fold is pushed and accelerated by
the aerodynamic pressure on the vocal fold surface. During the closing
phase, the vocal fold transfers kinetic energy back to the airflow. Part
of the kinetic energy is dissipated during the process due to factors
such as the boundary layer effect (Titze, 1980), damping within the tis-
sue, and tissue contact at the vocal fold medial surface (Motie-Shirazi
et al., 2021; Zhang et al., 2006). This bidirectional energy exchange
supports the self-sustained oscillation of the vocal folds, which is essen-
tial for human voice production (Motie-Shirazi et al., 2021). It also
plays a critical role in vocal efficiency and may have implications for
the onset and progression of voice disorders (Ringenberg et al., 2021).
The dynamics of energy transfer during symmetric vocal fold vibration
have been investigated in several studies. Sundstr€om et al. (2025) and
Titze (1980) analyzed energy exchange in the steady-state oscillatory
regime, reporting both the distribution of kinetic energy in the airflow
and the mechanical work performed by surface pressure on the vocal
fold tissue. However, the mechanisms of energy exchange during
asymmetric vocal fold vibration remain not well understood and war-
rant further investigation. Therefore, the objective of the present study
is to investigate the energy exchange associated with asymmetric vocal
fold vibration.

In light of these, the present work aims to investigate the inher-
ently nonlinear dynamic effects of stiffness difference, thereby shed-
ding light on mechanisms of energy exchange during asymmetric
vocal fold vibration. A continuum-based two-dimensional (2D) FSI
model is developed in COMSOL Multiphysics using a finite element
method to investigate the effects of stiffness asymmetry on vocal fold
vibration. This model simulates the condition of UVFP and asymmet-
rical vibration by introducing asymmetry in the material properties of
the vocal folds. The vibratory patterns and energy conversion between
the airflow and vocal folds are analyzed to understand the phonation
of abnormal vocal folds, which are meaningful for the diagnosis of
voice disorders.

II. PHYSICAL MODEL AND FSI MODEL DEVELOPMENT

The vocal fold vibration is simulated with a two-dimensional
model as shown in Fig. 1. The vocal folds are placed in the rectangular
larynx model at 20mm from the entrance, with width W¼ 20mm,
height D¼ 20mm, and medial thickness T¼ 1.75mm. The initial gap
between the two vocal folds is 0.4mm. These dimensions of the vocal
folds are based on the M5 model, which was often employed for vocal
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fold vibration simulations (Chen et al., 2020; Li et al., 2020; 2021a; and
Tian et al., 2014).

In the rectangular channel shown in Fig. 1, the airflow is charac-
terized by density qf ¼ 1:13 kg=m3 and kinematic viscosity
�f ¼ 0:000 23Pa s. A typical subglottal driving pressure at 1 kPa is
applied, which results in an estimated intraglottal jet velocity of

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðDPÞ=qf

q
� 42m=s. We define the characteristic Reynolds

number Rej ¼ Vd=�f ¼ 210, where d ¼ 1mm is the characteristic
glottal gap during the opening phase (Chen et al., 2020; Li et al., 2020;
2021a; and Tian et al., 2014). Therefore, the flow is assumed to be lam-
inar (details in Subsection 2 of the Appendix), viscous, and incom-
pressible. The flow is governed by the Navier–Stokes equation, which
is written as follows:

@u
@x

þ @v
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8>>>>>>>>>><
>>>>>>>>>>:

(1)

where u, v; and p are the Cartesian velocity components and the pres-
sure, respectively.

The vocal folds are assumed to be homogeneous material. Their
deformations are modeled by the two-parameter Saint Venant–
Kirchhoff model, which is a hyperelastic model. This model is one of
the commonly employed models to represent large deformations of
soft tissues in vocal fold research (Chen et al., 2020; Li et al., 2020;
2021a; 2021b; andWex et al., 2015). The strain energy density function
in this model is given as (Muhr, 2005)

W ¼ k
2

tr Eð Þð Þ2 þ l � tr E2ð Þ; (2)

where E is the Green–Lagrange strain tensor, defined as E
¼ 1

2 ðFTF � IÞ; I is the identity matrix, F is the deformation gradient
tensor. k and l are the Lam�e parameters, defined as follows:

k ¼ E�

1þ �ð Þ 1� 2�ð Þ ; (3)

l ¼ E
2 1þ �ð Þ ; (4)

where E is Young’s modulus and �¼ 0.475 is Poisson’s ratio. To inves-
tigate the effect of stiffness on vocal fold vibration, two groups of vocal

folds with baseline stiffness values, E¼ 30, and 60kPa, respectively, are
modeled in this study. These values are selected based on previous lit-
erature and are within the physiologically reasonable range for vocal
fold tissue (Alipour and Vigmostad, 2012; Cook et al., 2008; and Li
et al., 2021a; 2021b). The cases with the same Young’s modulus on
both sides of the vocal fold represent healthy conditions. To simulate
UVFP, the upper vocal fold is fixed at a closed position. The asymmet-
rical vibration is modeled by reducing the stiffness of the upper vocal
fold. The stiffness values of the vocal folds are listed in Table I for all
the cases; the density of vocal fold tissue is qs ¼ 1040 kg=m3.

Rayleigh damping is employed to simulate the energy dissipation
characteristics of the tissue. The Rayleigh damping vector (C) is writ-
ten as follows (Hall, 2006):

C ¼ aM þ bK; (5)

where M is the mass matrix and K is the stiffness matrix. a and b,
respectively, are coefficients of the mass and stiffness, which are calcu-
lated as follows:

a ¼ 4pf1f2
ff2 � ff1
f2
2 � f1

2 ; (6)

b ¼ ff2 � ff1
p f2

2 � f1
2

� � ; (7)

where f ¼ 0:01 is the damping ratio. f1 and f2, respectively, are the first
and second eigenfrequencies of the vocal folds.

The airflow passes the rectangular larynx model from the subglot-
tic side to the supraglottic side. The inflow is assumed to be fully devel-
oped, driven by inlet pressure Psub ¼ 1 kPa. The outlet pressure is set
to the reference pressure at Pout ¼ 0 Pa. The walls of the rectangular

FIG. 1. The computational domain of the
2D vocal fold model. The red and blue
dots are the monitoring locations for the
pressure and displacement, respectively.

TABLE I. Vocal fold stiffness.

Case ID

Young’s modulus (kPa)

Upper vocal fold Lower vocal fold

S1C1 30 30
S1C2 Fixed 30
S1C3 25 30
S1C4 20 30
S2C1 60 60
S2C2 Fixed 60
S2C3 55 60
S2C4 50 60
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channel and the vocal fold surfaces are no-slip and no-penetration
boundaries for the flow field. The base of the vocal fold is the fixed
boundary at which the motion of the vocal fold is constrained. To han-
dle vocal fold contact and maintain flow domain continuity, a mini-
mum glottal gap of 0.1mm was enforced during the simulation (Li
et al., 2021a).

The present FSI model is developed in commercial software
COMSOL Multiphysics. The airflow is modeled with the Laminar
Flow module. Both the velocity and pressure fields are discretized by
second-order elements, together with a consistent stabilization scheme.
The vocal fold tissue, represented as a hyperelastic medium, is modeled
with the Solid Mechanics module. The displacement field is discretized
by cubic elements. The interaction between the airflow and the vocal
fold is captured via the FSI interface using deformable mesh. The solu-
tion of flow and solid fields is solved by a fully coupled algorithm. The
time integration is performed implicitly by employing the generalized-
a method. The time step is Dt ¼ 3� 10�5 s for both the fluid and the
solid solvers, as determined from a time step independence study. At
each time step the solution is solved by the Newton iteration method
with a convergence criterion 1� 10�6. Each simulation is conducted
until a well-defined dynamic equilibrium is achieved as characterized
by a fully developed airflow. A validation of the FSI model is provided
in Subsection 1 of the Appendix.

For case S1C1 (healthy case, both sides have 30kPa stiffness),
simulation results on grids with 8326–26 590 elements are compared
in Fig. 2. Pressure at the subglottic side (red point in Fig. 1) and the
flow rate are shown in Figs. 2(a) and 2(b), respectively. The results
from these simulations collapse on each other, showing a grid conver-
gency of flow field simulation. For simulations of the vocal fold
motion, frequency and amplitude of vocal fold vibration are compared
in Table II. The amplitude is measured by the y-displacement of the
point at the glottal exit. In Table II, the frequency is the same for these
simulations. Seen from the amplitude, the grid with more than 12 132
elements does not significantly improve the results, so the grid with
12 132 elements is sufficient for the present study. It should be noted

that the grid 12 132 has a maximum element size of 0.7 cm. Assuming
at least 12 elements per wavelength of sound (Marburg, 2008), this
maximum element size corresponds to a cutoff frequency of about
4000Hz, which is high enough for the present investigation.

III. RESULTS AND DISCUSSION

A systematic investigation of the cases listed in Table I is pre-
sented in this section to elucidate how stiffness asymmetry affects pho-
nation. The analysis examines the vibration pattern of the vocal fold
and the associated energy transfer during the FSI process. The vibra-
tion patterns are examined through (1) the flow field and stress distri-
bution in the vocal folds and (2) nonlinear vibratory behaviors
characterized by frequency, amplitude, and dynamic phase space pat-
terns. As mentioned in the Introduction, the present study, in addition
to the energy analyses of symmetrical vocal fold vibration, examines
the energy conversion in asymmetrical vibration.

A. Flow field and stress in vocal folds

The flow field and deformation data of the vocal fold are available
from the simulation for all eight cases (see Subsection 2 of the
Appendix). Here, we focus on cases S1C1 and S1C2, which represent
the healthy and UVFP conditions, respectively. Figure 3 shows the lat-
eral displacement of the vocal fold tip for case S1C1. The lateral dis-
placement is measured at the blue dot on the lower vocal fold as
marked in Fig. 1. The flow is sampled after time t0, after which the air-
flow becomes fully developed. A complete oscillation cycle of the lower
vocal fold is marked in blue in Fig. 3, on which nine instances are
selected for analysis, as marked by T0–T8 in sequence.

The flow in the vocal fold channel and the stress on the vocal
folds are shown in Figs. 4 and 5, respectively. In Fig. 4, the vortical
flow of cases S1C1 and S1C2 are compared for a regular cycle of vocal
fold motion. In both cases, a train of vortical structures concentrates
near the vocal fold and then weakens gradually streamwise. The vorti-
cal structures are initially a pair of vortex sheets with opposite signs at
the exit of the vocal fold. These vortex sheets quickly roll up to form a
pair of eddies that are rotating in opposite directions. In case S1C1, as
shown in Fig. 4(a), the scale of eddies in count-clock-wise-rotating and
clock-wise-rotating are similar. In case S1C2, as shown in Fig. 4(b), the
flow field seems dominated by a clock-wise-rotating eddy, which is
entraining with the surrounding count-clock-wise-rotating eddies.
These results suggest that the asymmetry of vocal fold motion affects
the development of vortical structures, at least in the region near the
vocal fold.

FIG. 2. The grid-independent study for (a)
comparison of pressure at a point (red
point marked in Fig. 1) and (b) flow rate.

TABLE II. Frequency and amplitude of vocal fold vibration.

Element number 8326 12 132 17 992 26 590

Frequency (Hz) 192 192 192 192
Amplitude (mm) 0.70 0.73 0.71 0.72
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The distribution of von Mises stress in the vocal folds is com-
pared in Fig. 5 for cases S1C1 and S1C2. During the vocal fold closure
phase, as shown in Fig. 5(a), from T0 to T4, the stress concentrates at
two side surfaces of the vocal fold at T0, then the stress propagates into
the vocal fold and concentrates at the base of the vocal fold at T4.
During the opening phase, as shown in Fig. 5(b) from T4 to T8, the
stress propagates inversely from the base to the two side surfaces of the
vocal fold to finish a cycle of the stress changing. In Fig. 5(b), the stress
variation is relatively mild in the mobile vocal fold, showing the effect
of asymmetric motion in the solid deformation.

In summary, the results of cases S1C1 and S1C2 have revealed
significant differences when there is an asymmetry in the material
properties on two sides of the vocal fold. Similar results are observed in
other cases (see Subsection 2 of the Appendix).

B. Nonlinear analysis of vocal fold vibrations

1. Asymmetry vibration parameters

The frequency and amplitude of vocal fold vibration are compared
in Table III for the cases listed in Table I. The vibration is measured by
the lateral displacement of the monitor points as marked by blue dots
in Fig. 1. In Table III, the fundamental frequency is the dominant
frequency estimated by the fast Fourier transform of the displacement
signal. The amplitude is the maximum absolute of the displacement
averaged in the range of t � t0 ¼ 0–0:1 s.

For healthy conditions, as in cases S1C1 and S2C1 listed in
Table III, the results for two sides of the vocal fold match with each
other, which is essential for effective phonation. In comparison with
case S1C1, case S2C1 exhibits a lower amplitude and higher funda-
mental frequency, which is consistent with the increased stiffness in
S2C1. The fundamental frequencies of cases S1C1 and S2C1 are 190
and 250Hz, respectively. Similar results are observed in Li et al.
(2021a), where a vocal fold with a stiffness of 30 kPa exhibits a funda-
mental frequency of about 190Hz, and the 60kPa one approximates
to 260Hz. These results show the reliability of the present simulations.
For the UVFP condition, both cases S1C2 and S2C2 exhibit a signifi-
cant reduction in vibration amplitude, while the fundamental fre-
quency of the deformable side is close to that in the healthy condition.
When the upper side of the vocal fold is softer than the lower one, as
in cases S1C3 and S2C3 in Table III, the two sides of the vocal fold are
locked at the same fundamental frequency, whose value is slightly
lower than that of the healthy condition. The softer side exhibits a
lower amplitude than that of the stiffer side, and for both sides, the
amplitude is lower than that in the healthy condition.

In comparison with S1C3 and S1C4, the lock-in frequency dis-
appears, and the amplitude of both sides increases. In comparison
with S2C3 and S2C4, although the amplitude in these two cases is
similar, the vibration in S2C4 is found to transition into a chaotic
pattern, so no fundamental frequency is identified. From these
results, whether there is a lock-in frequency or not depends on the
stiffness difference as well as the stiffness itself. These results are also
reported by Xue et al. (2014), who reported similar reductions in fre-
quency and amplitude under conditions of superior–inferior tension
imbalance.

2. Dynamical analysis of vibration

To visualize the state of the dynamic system, the waveform of dis-
placement together with the recurrence plot and three-dimensional
(3D) phase of the state vector are plotted in Figs. 6–13 for the cases in
Table I. The state vector xi ¼ x tið Þ; x ti þ sð Þ; x ti þ 2sð Þ� �

is equipped
with time series of displacement x tð Þ with a time delay s. The
s ¼ 1:5� 10�3 s is determined using the first minimum of the Mutual
Information (MI) function (Fraser and Swinney, 1986; Doranehgard
et al., 2024). The recurrence plot is a contour of the recurrence matrix,
which is defined as

Ri;j ¼ H �� xi � xj
�� ��� 	

; (8)

where H is the Heaviside function, defined as H ¼ 1 for x � 0 and
H ¼ 0 for x < 0. The recurrence threshold � is set to 0.25 in this study
to make the recurrence plot clear. �k k denotes the Euclidean norm.
The recurrence plot marks an instance when the system revisits similar
states in phase space. In the recurrence plot, the diagonal lines, isolated
points, and disrupted structures, respectively, indicate the temporal
regularity and the potential emergence of nonlinear and chaotic behav-
ior of the system states (Doranehgard et al., 2024). The 3D phase plot
visualizes the state vector xi in coordinates of ½t; t þ s; t þ 2s�. In the
3D phase plot, the trajectory in the shape of a ring is typically associ-
ated with quasi-periodic behavior, while the dispersed or fragmented
shapes indicate the chaotic vibrations (Liu et al., 2024). Figure 6
presents the results of case S1C1, which is the healthy condition with
Young’s modulus at 30 kPa. In Figs. 6(a) and 6(b), it can be seen that
the waveforms of the displacement in the upper and lower vocal folds
are similar, suggesting a synchronized motion between the two sides.
In Figs. 6(b) and 6(e), the recurrence plots of the upper and lower vocal
folds both display clear, evenly spaced diagonal lines with noticeable
width. This result indicates a quasi-periodic pattern. Correspondingly,

FIG. 3. The schematic diagram of nine
evenly distributed time instances in one
cycle.
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the three-dimensional phase portraits, in Figs. 6(c) and 6(f), exhibit
closed-loop, ring-shaped trajectories for both folds, which further con-
firm the presence of a quasi-periodic pattern. These results suggest
that in symmetric (healthy) conditions, vocal fold vibration follows a

quasi-periodic pattern. A similar quasi-periodic pattern is also found
in Xue et al. (2010).

Figure 7 shows the results of case S1C2, which is the case of
UVFP with Young’s modulus at 30 kPa on the lower vocal fold. In

FIG. 4. The vorticity field during a regular
cycle of vocal fold motion. Cases (a)
S1C1 and (b) S1C2 represent the healthy
and UVFP conditions, respectively.
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FIG. 5. The distribution of von Mises
stress during a regular cycle of vocal fold
motion. Cases (a) S1C1 and (b) S1C2
represent the healthy and UVFP condi-
tions, respectively.

TABLE III. The characteristic parameters of asymmetry vocal fold vibration.

Case ID

Fundamental frequency (Hz) Average amplitude (mm)

Upper vocal fold Lower vocal fold Upper vocal fold Lower vocal fold

S1C1 190 190 0.72 0.73
S1C2 Fixed 180 Fixed 0.46
S1C3 190 190 0.36 0.46
S1C4 160 190 0.52 0.72
S2C1 250 250 0.37 0.37
S2C2 Fixed 250 Fixed 0.13
S2C3 250 250 0.15 0.17
S2C4 � � � � � � 0.14 0.12

FIG. 6. Dynamic behavior of vocal fold vibration in case S1C1 for (a) and (d) displacement, (b) and (e) recurrence plots, and (c) and (f) 3D phase space plots. (a)–(c) are
results of the upper vocal fold. (d)–(f) are results of lower vocal folds.
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Fig. 7, the upper vocal fold in case S1C2 is fixed and therefore not con-
sidered in the nonlinear dynamic analysis. In Fig. 7(a), the lower vocal
fold exhibits a vibration pattern that is regular over time. In Fig. 7(b),
the recurrence plot of case S1C2 presents clear and parallel diagonal
structures, which indicate a quasi-periodic state similar to that
observed in Figs. 6(b) and 6(e). This behavior is further supported by
the 3D phase trajectory shown in Fig. 7(c), which forms a smooth,
closed loop. Therefore, the system presents a quasi-periodic pattern
when one side of the vocal fold is fixed.

Figure 8 shows the results of case S1C3, in which the Young’s
modulus for upper and lower vocal folds are 25 and 30 kPa, respec-
tively. In Figs. 8(a) and 8(b), the waveform of the displacement is sta-
ble, showing a regular motion. In Figs. 8(b) and 8(e), the recurrence
plots of case S1C3 present clear and parallel diagonal lines on both
sides of the vocal fold. This feature is similar to that observed in the
healthy case (S1C1), which indicates a quasi-periodic pattern. The 3D
phase portraits are shown in Figs. 8(c) and 8(f) for the upper and lower
sides of the vocal fold, respectively. In these 3D phase portraits,
although the trajectories are in the shape of a toroidal, they are less

coincidental than that observed in Fig. 6(c) for case S1C1. Thus,
although the vibration pattern is quasi-periodic, the effects of stiffness
difference can be captured by the 3D phase portraits, in which the
deviation from a periodic trajectory emerges.

Figure 9 shows the results of the case S1C4, in which the
Young’s modulus for the upper and lower vocal folds are 20 and
30kPa, respectively. Results of the lower vocal fold are shown in
Figs. 9(d)–9(f). A quasi-periodic pattern is observed for the case
S1C4, which is similar to that in cases S1C1–S1C3. Results of the
upper vocal fold are shown in Figs. 9(a)–9(c). In Fig. 9(a), the dis-
placement of the upper vocal fold demonstrates an amplitude modu-
lation. In Fig. 9(b), although localized concretions of points are
observed, the recurrence plot still exhibits a pattern of parallel diago-
nal lines. The corresponding phase portrait shown in Fig. 9(c) main-
tains a toroidal-like structure, with trajectories distributed around a
central region in the phase space. These features suggest that the
vibration remains quasi-periodic in nature. Compared to Fig. 9(f),
the more dispersed trajectory in the phase portrait indicates that
early signs of nonlinear dynamics have begun to emerge. Thus, the

FIG. 7. Dynamic behavior of vocal fold vibration in case S1C2 for (a) displacement, (b) recurrence plot, and (c) 3D phase space plot.

FIG. 8. Dynamic behavior of vocal fold vibration in case S1C3 for (a) and (d) displacement, (b) and (e) recurrence plots, and (c) and (f) 3D phase space plots. (a)–(c) are
results of the upper vocal fold. (d)–(f) are results of lower vocal folds.
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stiffness difference triggers a transition from the quasi-periodic state
to the chaotic state.

Figure 10 shows the results of case S2C1, which is the healthy
condition with Young’s modulus at 60 kPa. In the first and second
rows of Fig. 10, the results of the upper and lower vocal folds show
similarity, suggesting a synchronized motion between the two sides. In
Figs. 10(a) and 10(d), it can be seen that both the upper and lower
vocal folds exhibited regular oscillatory behavior and the displace-
ments of the two sides of the vocal fold are symmetrical. In Figs. 10(b)

and 10(e), the recurrence plots of S2C1 revealed a series of evenly
spaced, narrow diagonal lines. The corresponding 3D phase portrait,
in Figs. 10(c) and 10(f), displays a thin, well-defined toroidal structure
centered in phase space. Therefore, similar to case S1C1, the vocal fold
vibration under healthy conditions appears as a quasi-periodic pattern.

Figure 11 shows the results of case S2C2, which is the UVFP with
Young’s modulus of the lower vocal fold at 60 kPa. In Fig. 11(a), the
lower vocal fold is found exhibiting a regular motion. In Fig. 11(b), the
recurrence plot clearly shows an evenly spaced diagonal structure. In

FIG. 9. Dynamic behavior of vocal fold vibration in case S1C4 for (a) and (d) displacement, (b) and (e) recurrence plots, and (c) and (f) 3D phase space plots. (a)–(c) are
results of the upper vocal fold. (d)–(f) are results of lower vocal folds.

FIG. 10. Dynamic behavior of vocal fold vibration in case S2C1 for (a) and (d) displacement, (b) and (e) recurrence plots, and (c) and (f) 3D phase space plots. (a)–(c) are
results of the upper vocal fold. (d)–(f) are results of lower vocal folds.
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FIG. 11. Dynamic behavior of vocal fold vibration in case S2C2 for (a) displacement, (b) recurrence plot, and (c) 3D phase space plot.

FIG. 12. Dynamic behavior of vocal fold vibration in case S2C3 for (a) and (d) displacement, (b) and (e) recurrence plots, and (c) and (f) 3D phase space plots. (a)–(c) are
results of the upper vocal fold. (d)–(f) are results of lower vocal folds.

FIG. 13. Dynamic behavior of vocal fold vibration in case S2C4 for (a) and (d) displacement, (b) and (e) recurrence plots, and (c) and (f) 3D phase space plots. (a)–(c) are
results of the upper vocal fold. (d)–(f) are results of lower vocal folds.
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Fig. 11(c), although the phase portrait is more dispersive than that of
the healthy condition in Fig. 10(f), the closed toroidal trajectory
remains bounded and continuous, suggesting the vibration pattern in
case S2C2 is quasi-periodic. The stiffness of case S2C2 is higher than
that of case S1C2. Therefore, the system is able to maintain a quasi-
periodic pattern when one side of the vocal fold is fixed, although the
stiffness of the vocal fold is increased.

Figure 12 shows the results of case S2C3, in which the Young’s
moduli of the upper and lower vocal folds are 55 and 60 kPa, respec-
tively. In Fig. 12(a), the displacement of the upper vocal fold exhibits
amplitude variation, which indicates the onset of chaos, although the
dominant oscillatory behavior remained quasi-periodic. In Fig. 12(b),
the recurrence plot of the upper vocal fold displays evenly spaced par-
allel diagonal lines, which is characteristic of quasi-periodicity. It may
be observed that the dots in Fig. 12(b) are not uniform, which suggests
the occurrence of nonlinearity. In Fig. 12(c), the 3D phase portrait is
bounded and continuous, further confirming the quasi-periodic nature
of the dynamics. However, the trajectory in Fig. 12(c) is less concen-
trated than that of the case S2C1 in Fig. 10(c), indicating a transitional
state toward chaos. The results of the lower vocal fold, as shown in
Figs. 12(d)–12(f), are similar to those observed in Figs. 10 and 11,
which suggest that the lower vocal fold maintains a quasi-periodic
vibration pattern. However, in Fig. 12(f), the phase trajectory appears
more dispersed than that in Fig. 10(f). Considering that the stiffness of
the lower vocal fold is the same between cases S2C3 and S2C1, the dis-
persed trajectory in the lower vocal fold is probably caused by the cou-
pling between the upper and lower vocal folds.

Figure 13 presents the results of case S2C4, in which the upper
and lower vocal folds have asymmetric Young’s moduli of 50 and
60 kPa, respectively. Under this condition, the vibratory behavior of
the vocal fold deviates from regular periodic motion. As shown in
Fig. 13(a), the displacement of the upper fold shows that the amplitude

is fluctuating, and the waveform is distorted. These results indicate a
strong nonlinear dynamic of the upper fold. The recurrence plot
shown in Fig. 13(b) exhibits fragmented and scattered patterns, which
suggest a breakdown of quasi-periodic dynamics. This result is sup-
ported in Fig. 13(c), as the trajectory becomes chaotic, where the trajec-
tory becomes highly disordered and no longer forms a toroidal
structure. In Fig. 13(d), the lower vocal fold also deviates from regular
motion, which is evidenced by irregular oscillation and amplitude
modulation. In Fig. 13(e), although some parallel lines remained, the
recurrence plot showed partially broken diagonal lines with dispersion.
The 3D phase portrait in Fig. 13(f) reveals a disordered trajectory,
which is much more tangled than that in Fig. 9(c). Considering that
the stiffness of the lower vocal fold is the same between cases S2C4 and
S2C1, the disordered trajectory in the lower vocal fold suggests an
underlying interconnection between the two sides of the vocal folds, by
which both the upper and lower vocal folds have entered a chaotic
regime. Such a chaotic pattern differs from the quasi-periodic one
reported by Xue et al. (2010).

C. Energy transfer

The energy transfer during the FSI process is quantified by the
averaged kinetic energy variation of the flow and the averaged work
done by the flow to the vocal fold. From a control volume point of
view, the pressure input at the inlet is converted to the kinetic energy
of the flow and the energy of the vocal folds. Once vibration is estab-
lished, the energy of the vocal folds is constant, and the pressure input
at the inlet is mostly supplied to the kinetic energy of the flow except
for the damping in the system. Thus, the ratio between the vocal fold
kinetic energy and the flow kinetic energy could be viewed as a crite-
rion for efficiency. Results of the case S1C1 are provided in Fig. 14 as
an example. The averaged kinetic energy of the flow is calculated by
integration as follows:

FIG. 14. The kinetic energy of flow (a) and power of the vocal folds (b) and (c) along time for S1C1. (b) and (c) The power for the upper and lower VF, respectively; the negative
power is marked in gray.
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KE ¼ 1
t1 � t0

ðt1
t0

ð
S

1
2
qf u2 þ v2ð ÞdSdt; (9)

where S is the computational domain of the flow field in Fig. 1. t0 and
t1 are shown in Figs. 6(a)–13(a), with t1 � t0 ¼ 0:1. The power of
work done by fluid on the vocal fold is calculated for each side of the
vocal fold via

P tð Þ ¼
ð
L
pvndx; (10)

where L is the surface of the vocal fold. p is the pressure on the surface.
vn is the normal component of the fluid velocity on L, which points
from the fluid side to the solid side. The negative power means the
pressure is driving the motion of the vocal fold, and thus, the energy is
transferred from the flow into the vocal fold. As marked in gray in
Figs. 14(b) and 14(c), the negative part of the power is then integrated
over time to obtain the work done by the fluid pressure on the vocal
fold surface, as follows:

Wneg;i ¼
ðtiþ1

ti

Pneg tð Þdt; (11)

where power Pneg tð Þ is less than zero during the time range ½ti; tiþ1�.
To quantify the work for both the quasi-periodic and the chaotic state
of the motion, the averaged work is calculated over the time of energy
variation, as follows:

Wneg ¼ 1
N

XN

i
Wneg;i; (12)

where N is the number of cycles.
The ratio B ¼ Wneg=KE quantifies the energy contribution from

the fluid to the vibration of the vocal fold, and it is used here to repre-
sent the conversion efficiency of the kinetic energy. Bu and Bl are the
ratio of the upper and lower vocal folds, respectively. Bt ¼ Bu þ Bl

represents a conversion efficiency of the vocal folds. The ratios of the
cases in Table I are listed in Table IV. For healthy conditions, as in
cases S1C1 and S2C1 in Table IV, the Bu and Bl are close to each other.
For UVFP conditions, as in cases S1C2 and S2C2 in Table IV, the
lower vocal fold exhibits a reduced percentage compared to the healthy

condition. In the case groups S1C1–S1C4, case S1C2 yields the lowest
KE in the fluid domain. The case S2C2 also yields the lowest KE in
case groups S2C1–S2C4. These results confirm the severe impact of
UVFP on vibratory dynamics and energy exchange. For cases with
asymmetric stiffness, like cases S1C3, S1C4, S2C3, and S2C4, the ratio
Bt is less than 65% of that of the healthy one but is still higher than
that in the UVFP condition. These results suggest that the stiffness dif-
ference tends to decline the conversion efficiency of the kinetic energy.
For the case with Young’s modulus 30 kPa in lower vocal fold, as in
cases S1C3 and S1C4, Bl tends to increase as the stiffness difference
grows. This trend is consistent with the amplitude analysis, where
greater oscillation is observed for the lower vocal fold in Table III. For
the case with Young’s modulus 60 kPa in the lower vocal fold, as in
cases S2C3 and S2C4 in Table IV, Bl is found decrease as the asymme-
try grows. Considering the quasi-periodic vibration in Fig. 12 and the
chaotic one in Fig. 13, this result is probably due to the conversion effi-
ciency of the kinetic energy being low when the vibration of vocal folds
is chaotic.

In summary, the energy conversion efficiency declines when two
sides of the vocal fold have stiffness differences, especially in cases of
UVFP. For two sides of the vocal fold, the energy transfers are similar
in cases of symmetric stiffness. The asymmetrical stiffness alters the
work done on each side of the vocal fold and reduces the energy con-
version efficiency. Notably, chaotic vibrations, as seen in case S2C4,
further decrease the conversion efficiency, highlighting the critical role
of vibration regularity in maintaining effective fluid-to-structure
energy transfer.

IV. CONCLUSION

The influence of stiffness difference, in the range of 0–10MPa, on
vocal fold vibration pattern and energy transfer is investigated, for
vocal folds with stiffness in the range of 30–60MPa. The vocal fold
vibration amplitude, frequency, and displacement pattern are analyzed.
The kinetic energy of airflow and the pressure work on the vocal fold
surface are calculated to quantify the energy conversion between the
airflow and the vocal folds. The main conclusions are summarized as
follows:

(1) The UVFP and the stiffness difference are responsible for the
decrease in amplitude. When the stiffness difference is less than
5MPa, the vocal fold vibration allows a frequency lock-in
between the two sides, and the lock-in frequency depends on
the stiffness of the stiffer side.

(2) The vibration pattern is quasi-periodic for the cases in symmet-
ric and UVFP conditions. When the stiffness difference is less
than 5MPa, the vibration is still capable of maintaining a quasi-
periodic pattern. As the stiffness difference reaches 10MPa, the
vibration exhibits a transition from the quasi-periodic state to
the chaotic state, and this transition becomes more pronounced
for the stiffer vocal fold.

(3) The energy conversion efficiency is balanced between two sides
of the vocal fold when stiffness is symmetric. This efficiency
declines in the presence of a stiffness difference and under
UVFP conditions. The stiffness difference alters the work done
to each side of the vocal fold and can induce chaotic vibration.
The energy conversion efficiency is further decreased when cha-
otic vibration happens, indicating the importance of vibration

TABLE IV. The average kinetic energy and the proportion of work done by the fluid
pressure on VF.

Case ID

Ratio between work and kinetic energy, B

KE ðJÞ

Upper
vocal fold,
Bu (%)

Lower
vocal fold,
Bl (%) Bt ¼ Bu þ Bl (%)

S1C1 4.42 4.45 8.86 0.0377
S1C2 0 3.86 3.86 0.0168
S1C3 2.39 2.11 4.50 0.0342
S1C4 2.19 3.40 5.59 0.0418
S2C1 2.88 2.94 5.82 0.0261
S2C2 0 0.174 0.174 0.0117
S2C3 0.496 0.665 1.16 0.0226
S2C4 0.213 0.228 0.441 0.0251
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regularity in maintaining effective fluid-to-structure energy
transfer.

These findings may have implications for therapeutic interven-
tions and clinical diagnostics. In particular, the observed link between
stiffness difference and vibration stability suggests that keeping the
stiffness difference within an appropriate range could help maintain
stable vibration patterns and effective energy transfer, which are
important for voice quality. This may provide a biomechanical refer-
ence for guiding treatment adjustments, such as tuning implant ten-
sion or injection material stiffness, and for evaluating recovery after
clinical intervention.

V. CURRENT SHORTCOMINGS

In this study, the vocal folds are modeled in a two-dimensional
domain, which cannot fully capture the complex coupling behavior
present in three-dimensional structures. Establishing a three-
dimensional model will help improve the accuracy and applicability of
the study. Based on our current understanding, three-dimensional
effects could modify the quantitative predictions. From the fluid-flow
side, spanwise instabilities could strengthen the unstable vibrations
seen in 2D, giving similar or stronger instability. From the fluid–struc-
ture coupling side, the extra constraints from the two fixed surfaces on
each vocal fold might reduce the motion, leading to weaker instability.

The nonlinear viscoelastic properties of biological tissues and the
mechanical differences between tissue layers are not fully considered in
the present model, which may affect the accuracy of energy conversion
results. In the future, experimental measurements will be combined to
obtain more accurate material parameters of tissue so as to improve
the physiological relevance of the model. Our group is also working on
three-dimensional fluid–structure interaction simulations to study the
nonlinear vibration behavior of asymmetrical vocal folds, and the
results will be reported in future publications.
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APPENDIX: SUPPLEMENTARY REMARKS ON
MODELING

1. Validation of the FSI model

To validate the computational model, the motion of a flexible
flapper downstream of a cylinder is simulated, and results are com-
pared with available simulation data in the literature. The computa-
tional domain is a rectangular channel as shown in Fig. 15. The
cylinder, flapper, and up-and-downsides of the channel are no-slip
walls. The Reynolds number is based on the averaged inlet velocity
U 0 and the cylinder radius R, is Re ¼ 2U 0R=�f ¼ 100. The density
ratio between solid structure and fluid flow is 10.

FIG. 15. Computational domain of the
flapper downstream of a cylinder. The free
end of the flapper is marked by point A.
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The displacement of the flapper is shown in Fig. 16. The x-
and y-displacements of the point A, as marked in Fig. 15, are shown
in Figs. 16(a) and 16(b), respectively. In Fig. 16, both the x- and y-
displacements of point A show regular amplitude and are in good
agreement with the result from Tian et al. (2014). The oscillation
magnitude Am, the Strouhal number of the y-displacement, and the
average drag coefficient CD are listed in Table V, and are compared
with results from Tian et al. (2014), Turek and Hron (2006), and Li
et al. (2018). The Strouhal number is defined as St ¼ 2fR=U 0 where
f ¼ 2:94Hz is the frequency of signal in Fig. 16(b). The average

drag coefficient CD is defined by Fx=ð0:25qf U 2
0RÞ, where Fx ¼

6:38e� 4N=m is the average drag of the cylinder-beam system. In
Table V, good agreement between present results and the results in
the literature shows the validity of the present model.

2. Flow field and deformation data of the vocal fold

Before analyzing the flow field and vocal fold deformation, the
velocity distribution at the moment of peak glottal opening, when
the maximum velocity occurs, is analyzed to verify the validity of
the laminar flow assumption. As shown in Fig. 17(a), the streamwise
velocity in the computational domain is visualized by contour lines.
The corresponding velocity profiles at five streamwise positions
(X1–X5) are presented in Figs. 17(b)–17(f). These profiles indicate
that the glottal jet is fully developed downstream of the vocal folds,
with a peak velocity reaching approximately 50m/s. Thus, the Rej
¼ Vd=�f � 217 is well below the commonly accepted threshold for
transition to turbulence in internal flows, which typically transitions
to turbulence at Re> 2000 (Titze and Martin, 1998). Following this
verification, the flow field and solid deformation of the vocal folds
were analyzed in detail for cases S1C3, S1C4, and S2C1–S2C4, as
presented in Figs. 18 and 19.

FIG. 17. Velocity field at the moment of peak glottal opening. (a) Contour line of velocity, and (b) velocity profiles at streamwise locations X1–X5¼ 0.04, 0.4, 1.5, 6, and 14 cm,
downstream of the glottis.

FIG. 16. Displacement at the end of the
flapper: (a) x-displacement and (b) y-dis-
placement. The displacement is measured
at point A, as marked in Fig. 15.

TABLE V. Amplitude of the y-displacement of the free end, the Strouhal number St,
and the drag coefficient.

Am=2R St CD

Tian et al. (2014) 0.78 0.190 4.11
Turek and Hron (2006) 0.83 0.190 4.13
Li et al. (2018) 0.81 0.183 4.05
Present results 0.72 0.188 4.42

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 37, 091921 (2025); doi: 10.1063/5.0282547 37, 091921-14

Published under an exclusive license by AIP Publishing

 17 Septem
ber 2025 16:03:22

pubs.aip.org/aip/phf


FIG. 18. Spanwise vorticity contour for cases: (a) S1C3, (b) S1C4, (c) S2C1, (d) S2C2, (e) S2C3, and (f) S2C4.
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For cases S1C3, S1C4, and S2C1–S2S4 in Table I, the results of
vortical flow and solid deformation are shown in Figs. 18 and 19,
respectively. Figure 18 shows the spanwise component of vorticity
by contours. All the cases show similar vortical features. At the vocal
fold exit, the vortical structure is a pair of vortex sheets with oppo-
site signs. It rapidly rolls up to form a pair of rotating eddies. These

eddies dissipate downstream, and the flow gradually becomes uni-
form. However, the scale of the vortical structures is different for
these cases, as shown in the region near the vocal fold in Fig. 18.
Figure 19 shows the von Mises stress by contours. In Fig. 19, each
row shows the development of stress during a period of vocal fold
motion from time T0 to T8, after the flow is fully developed. From

FIG. 19. von Mises stress distributions of
cases: (a) S1C3, (b) S1C4, (c) S2C1,
(d) S2C2, (e) S2C3, and (f) S2C4.
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T0 to T4, the vocal fold is closing. Meanwhile, the distribution of von
Mises stress initially concentrates at the two side surfaces of the vocal
fold at T0, then propagates inward and accumulates near the vocal
fold base at T4. From T4 to T8, the vocal fold is opening. In the
meanwhile, the stress propagates inversely from the base toward the
two side surfaces, completing a full stress cycle. It is also found that
the stress distribution is different between the two sides of the vocal
fold for the cases with asymmetric stiffnesses, as shown in Figs. 19(a),
19(b), 19(d), and 19(e). Therefore, similar to those observed in Figs. 4
and 5 for cases S1C1 and S1C2, both the vortical flow and deforma-
tion of the vocal folds are affected by the stiffness asymmetry.
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